Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Infect Dis ; 22(1): 514, 2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1874998

ABSTRACT

BACKGROUND: The city of Melbourne, Australia experienced two waves of the COVID-19 epidemic peaking, the first in March and a more substantial wave in July 2020. During the second wave, a series of control measure were progressively introduced that initially slowed the growth of the epidemic then resulted in decreasing cases until there was no detectable local transmission. METHODS: To determine the relative efficacy of the progressively introduced intervention measures, we modelled the second wave as a series of exponential growth and decay curves. We used a linear regression of the log of daily cases vs time, using a four-segment linear spline model corresponding to implementation of the three successive major public health measures. The primary model used all reported cases between 14 June and 15 September 2020 then compared the projection of the model with observed cases predicting future case trajectory up until the 31 October 2020 to assess the use of exponential models in projecting the future course and planning future interventions. The main outcome measures were the exponential daily growth constants, analysis of residuals and estimates of the 95% confidence intervals for the expected case distributions, comparison of predicted daily cases. RESULTS: The exponential growth/decay constants in the primary analysis were: 0.122 (s.e. 0.004), 0.035 (s.e. 0.005), - 0.037 (s.e. 0.011), and - 0.069 (s.e. 0.003) for the initial growth rate, Stage 3, Stage 3 + compulsory masks and Stage 4, respectively. Extrapolation of the regression model from the 14 September to the 31 October matched the decline in observed cases over this period. CONCLUSIONS: The four-segment exponential model provided an excellent fit of the observed reported case data and predicted the day-to-day range of expected cases. The extrapolated regression accurately predicted the decline leading to epidemic control in Melbourne.


Subject(s)
COVID-19 , Epidemics , Australia/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Forecasting , Humans , Public Health
2.
PLoS One ; 16(7): e0253510, 2021.
Article in English | MEDLINE | ID: covidwho-1319515

ABSTRACT

BACKGROUND: Whilst evidence of use of face masks in reducing COVID-19 cases is increasing, the impact of mandatory use across a large population has been difficult to assess. Introduction of mandatory mask use on July 22, 2020 during a resurgence of COVID-19 in Melbourne, Australia created a situation that facilitated an assessment of the impact of the policy on the epidemic growth rate as its introduction occurred in the absence of other changes to restrictions. METHODS AND FINDINGS: Exponential epidemic growth or decay rates in daily COVID-19 diagnoses were estimated using a non-weighted linear regression of the natural logarithm of the daily cases against time, using a linear spline model with one knot (lspline package in R v 3.6.3). The model's two linear segments pivot around the hinge day, on which the mask policy began to take effect, 8 days following the introduction of the policy. We used two forms of data to assess change in mask usage: images of people wearing masks in public places obtained from a major media outlet and population-based survey data. Potential confounding factors (including daily COVID-19 tests, number of COVID-19 cases among population subsets affected differentially by the mask policy-e.g., healthcare workers) were examined for their impact on the results. Daily cases fitted an exponential growth in the first log-linear segment (k = +0.042, s.e. = 0.007), and fitted an exponential decay in the second (k = -0.023, s.e. = 0.017) log-linear segment. Over a range of reported serial intervals for SARS-CoV-2 infection, these growth rates correspond to a 22-33% reduction in an effective reproduction ratio before and after mandatory mask use. Analysis of images of people in public spaces showed mask usage rose from approximately 43% to 97%. Analysis of survey data found that on the third day before policy introduction, 44% of participants reported "often" or "always" wearing a mask; on the fourth day after, 100% reported "always" doing so. No potentially confounding factors were associated with the observed change in growth rates. CONCLUSIONS: The mandatory mask use policy substantially increased public use of masks and was associated with a significant decline in new COVID-19 cases after introduction of the policy. This study strongly supports the use of masks for controlling epidemics in the broader community.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Masks/statistics & numerical data , Policy , Australia/epidemiology , Cities/epidemiology , Health Behavior , Humans , Multivariate Analysis , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL